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Abstract. A strong/fragile-liquid pattern has been used as the basis for a classification of glass-
forming liquids indicating the sensitivity of the liquid structure to temperature changes. Also,
variations in ‘fragility’ have been observed in the ternary system Ge–As–Se depending on the
average coordination number. In recent papers, using a statistical method based on stochastic
transition matrices, an equation for the viscosity of the strong glass-forming liquid B2O3 was
obtained. In this work we find a theoretical equation for the viscosity for three different types
of covalent network glass. To achieve this end, the average relaxation time is taken as inversely
proportional to the average transition probability. To find an expression for the transition probability,
previous results obtained by the stochastic matrix method were used. The temperature derivative
method for finding the functional dependence for the relaxation time was also used; we arrived at
a theoretical expression that predicts a variation in ‘fragility’ for the covalent network glasses that
depends on the concentration (or coordination number).

Nomenclature

η viscosity
D measure of the structural ‘strength’
T0 temperature at which τ is infinite
η0 reference viscosity
〈r〉 coordination number
kB Boltzmann constant
T ′ cut-off temperature
m valence
a atoms with m = 2
b atoms with m′ = 3
c atoms with m′′ = 4
E1 energy cost of sticking a to a

E2 energy cost of sticking a to b

E3 energy cost of sticking b to b

E4 energy cost of sticking a to c

E5 energy cost of sticking c to c

E6 energy cost of sticking b to c
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ξ exp

(
E1 − E2

kB(T − T0)

)

µ exp

(
E1 − E3

kB(T − T0)

)

χ exp

(
E1 − E4

kB(T − T0)

)

δ exp

(
E1 − E5

kB(T − T0)

)
u atom of valence 2 at the rim with one valence free
(Pu probability of finding it at the rim)
v atom of valence 3 at the rim with two valences free
(Pv probability of finding it at the rim)
w atom of valence 3 at the rim with one valence free
(Pw probability of finding it at the rim)
y atom of valence 4 at the rim with one valence free
(Py probability of finding it at the rim)
t atom of valence 4 at the rim with two valences free
(Pt probability of finding it at the rim)
z atom of valence 4 at the rim with three valences free
(Pz probability of finding it at the rim)

1. Introduction

The structure and the structural changes occurring at the glass transition have been extensively
investigated by numerous techniques for many glass-forming systems [1–3]. Around the
glass transition temperature, Tg , the specific heat and viscosity exhibit different temperature
dependences, which are not yet satisfactorily understood from the mesoscopic and/or micro-
scopic point of view. In particular, for chalcogenide glasses, a lot of attention has been
devoted to understanding chemical and physical properties [4], since such glasses exhibit
electric and infrared transmission properties that make them useful in several technological
applications [5]. The most significant features on approaching the glass transition are a rapid
increase in the viscosity and a slowing down of the structural relaxation. It turns out that the
relaxation patterns for different glass-forming liquids show several common features, such as
a temperature dependence of the viscosity η which is usually well represented by the Vogel–
Fulcher–Tammann (VFT) empirical equation

η = η0 exp

(
DT0

T − T0

)
. (1.1)

T0 corresponds to the temperature at which η is infinite, η0 is a reference viscosity and D is
a measure of the structural ‘strength’ of the system. The largest values of D (D ≈ 20–100)
characterize those liquids which are most resistant to temperature-induced changes. These
liquids display a nearly Arrhenius behaviour and are referred to as ‘strong’ [6]. Covalently
bonded network glass formers like SiO2 (D = 100) [1] and B2O3 (D = 35) [7] belong to this
group. At the other extreme are the ‘fragile’ glasses: the systems with the smallest D-values
(D ≈ 3–5) exhibit the most rapid changes of η in the supercooled region. For the fragile
systems the dramatic changes of η in the transition range imply that T0 is close to Tg , while for
strong ones T0 is far below (Tg/T0 ≈ 2 for B2O3), Tg being the glass transition temperature.
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Systems like GexAsySe1−x−y cover almost the whole spectrum from strong to fragile
behaviour [8] and this depends on the composition. In fact, the minimum fragility observed
in this system occurs not at the highest value of the coordination number (〈r〉) but rather at
〈r〉 = 2.4, the rigidity–percolation threshold. At higher values of 〈r〉, specific chemical effects
such as the occurrence of double Se bridges begin to require consideration; these are fragile
structural elements [9].

In recent theoretical work, Barrio et al [10–12] used a statistical model in which the
stochastic matrix method (SMM) is applied to find the fraction of boron atoms belonging to
boroxol rings in a boron oxide (B2O3) glass. The SMM treats the problem of agglomeration
in a generalized way. In this method, it is supposed that the material grows when the atoms
agglomerate to form clusters. Each of these clusters is divided into two parts, the rim and the
bulk. The rim is composed of all of the entities that have the potential to receive new entities
that stick and agglomerate, and the bulk is all of the units that have saturated all their bonds.
The entities that compose the rim (atoms or any other building blocks) are found in a certain
number of geometric positions (called sites). In the SMM, the rim is considered as a vector,
in which each element is the probability of observing a certain kind of site, so the growth is
described by the application of a matrix to a vector, because the rim changes after adding one
entity to the cluster. This transformation of the rim depends on the probabilities of sticking
each kind of site onto others.

As has been shown [11], the SMM converges to a final configuration for the material, no
matter what the initial conditions are. It also predicts an oscillatory behaviour for the first steps
of the growth. These oscillations are damped in an exponential way as the solid grows. All
these properties are derived from the eigenvectors and eigenvalues of the stochastic matrix and,
thus, some of the convergence difficulties often found in numerical simulations are avoided.
Many different agglomeration processes can be described by the SMM. The difference between
the materials appears in the manner of constructing the stochastic matrix.

Each sticking process has a certain probability of occurring, so the matrix elements contain
the probabilities of transforming each kind of site into others. The probability factors must
include two contributions: (1) the statistical weight for each process—that is, the number of
ways leading to the same final result—and (2) the Boltzmann factor taking into account the
energy barrier necessary to form a certain kind of bond. The probability of sticking a new
unit in the bulk is taken to be proportional to exp(−Em/kBT ), where Em is the energy cost
of sticking a unit in the m-form at temperature T and kB is the Boltzmann constant. It is
important to remark that according to this assumption, it is possible to stick a unit at every
temperature T . In a recent paper [15] we showed that this would have a clear physical meaning
if a temperature T ′ is introduced in the Boltzmann factor such that for T = T ′, the probability
of sticking a unit in the bulk is equal to zero. This argument can be supported, because at some
temperature below Tg the glass system is unable to displace any unit to stick it in the bulk. Thus
by introducing this probabilistic cut-off temperature we generalize the SMM, and finally find
that the probability of sticking a new unit at the rim is proportional to exp(−Em/kB(T −T ′)).
Clearly if we set T ′ = 0, the results obtained in our previous discussion are recovered.

To identify T ′ as a physical property of the system, we next calculate the relaxation time
for the growth system using the SMM and the generalization described above. To do this
we proceed as follows. We first take the average relaxation as inversely proportional to the
transition probability [12]. Next, we identify the form of the relaxation equation by appealing
to the temperature derivative method. Finally we compare the resulting equation with that used
to reproduce the experimental data. We therefore begin with the SMM according to which the
probability of an average transition can be written as P(ξ ′′) where

ξ ′′ = exp(�E/kB(T − T ′))
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and �E is the difference between two E′
m. If

τ ∝ 1

P(ξ ′)
(1.2)

then using the method of the temperature derivative [13, 14] to linearize equation (1.2) we
obtain that [

d ln τ−1

dT

]−1/2

=
[
�E

kB

]−1/2 [
ξ ′ d ln P(ξ ′)

dξ ′

]−1/2

(T − T ′). (1.3)

For typical activation energies the temperature dependence of P(ξ ′) is negligible and the
second factor of equation (1.3) is reduced to a constant, so on integrating it we obtain a VFT-
like equation. Comparing equation (1.3) with equation (1.1), T ′ can be identified as T0 and
if T0 = 0 the ARR equation is obtained. It is important to remark that in this theoretical
context, T0 is interpreted not only as the temperature that yields an infinite relaxation time,
but also as the temperature at which the probability of sticking a unit into the bulk of the glass
system is zero. Equation (1.3) is not predicted starting from first principles; it is obtained as a
consequence of introducing a cut-off temperature.

In the SMM the consecutive agglomeration and growth of clusters is represented by
successive application of the matrix to the initial vector v0. After applying the matrix N times,
the final configuration of the surface is

vN =
N∑

j=1

aj (λj )
Nej

where ej are the eigenvectors of the matrix corresponding to the eigenvalue λj and aj are the
projections of v0 onto the eigenvectors of the matrix.

It is easy to prove that a matrix with all the columns normalized to one has at least one
eigenvalue equal to one, while all other (in general, complex) eigenvalues have their norm
always less than one. This condition means that only the eigenvectors with eigenvalue one
remain after many successive applications of the stochastic matrix. If we suppose that the
matrix has a single eigenvalue, 1 (corresponding to λ = 1), then, in the limit of large N , vN

converges to e1 since a1 must be one due to conservation of probability [15].
The purpose of this work is to find for typical covalent network glasses a theoretical

dependence of the viscosity on the temperature using the transition probability obtained by
the SMM. We only consider materials that may be conceived of as showing the simplest case
of purely dendritic growth—i.e. for which only one bond can be created between two closest
neighbours, excluding the possibility of forming rings. There are three covalent networks
studied in this work: those with valences two and four; those with valences two and three; and
the system with valences two, three and four. In section 2, we summarize the main features
of the SMM for covalent networks. In section 3, we present our results and their comparison
to experimental values through the experimental VFT equation. Finally, in section 4 we make
some remarks on the nature of these results.

2. The SMM description for covalent networks

2.1. The SMM description for covalent network systems formed from atoms of valences two
and three

Consider two star-like elementary blocks, symbolizing two types of atom, with valences m

and m′. Many network glasses correspond fairly well to this definition, e.g. AsxS1−x glass,



Theoretical framework for the VFT equation 9577

GexSe1−x glass. In our example we shall choose the lowest possible values m = 2 and
m′ = 3; the corresponding atoms will be denoted symbolically by a and b. Glass-forming
systems of this type are indeed known, e.g. AsxSe1−x . If we consider the simplest case of
purely dendritic growth, only three types of site, denoted by u, v, w, can be found on the rim
[16]. u is an atom of valence 2 at the rim with one free valence, v and w are atoms of valence
3 at the rim with two and one free valence respectively. Let the concentration of the b-atoms
in the surrounding medium be cb and that of the a-atoms be 1 − cb. It is easy to establish
that there are six possible transitions contributing to the probability factors. The Boltzmann
factors due the corresponding energy barriers are defined as follows: exp(−E1/k(T − T0))

for a–a; exp(−E2/k(T − T0)) for a–b; and exp(−E3/k(T − T0)) for b–b. Inserting in the
stochastic matrix all the contributions defining statistical weights of transitions resulting in the
corresponding transformation of sites, the matrix can be displayed as a 3×3 matrix that satisfies
the normalization condition. The eigenvalue-1 eigenvector shows the asymptotic distribution
(Pu, Pv , Pw) to which the average statistic tends, and that the P s satisfy the normalization
condition Pu + Pv + Pw = 1. Pu, Pv and Pw are the probabilities of finding one of the three
configurations on the rim of the cluster. After normalization, we get the stochastic matrix Mik

(i, k = u, v,w) transforming the probabilities of finding one of the three configurations on the
rim of a cluster (Pu, Pv , Pw) into a new set of probabilities (P ′

u, P ′
v , P ′

w) after the characteristic
time τ during which an entire new layer of atoms has grown, with one new atom at each
available site, namely [16]

M1 =




2(1 − cb)

2(1 − cb) + 3cbξ

(1 − cb)ξ

2(1 − cb)ξ + 3cbµ

2(1 − cb)ξ

2(1 − cb)ξ + 3cbµ
3cbξ

2(1 − cb) + 3cbξ

3cbµ

4(1 − cb)ξ + 6cbµ

3cbµ

2(1 − cb)ξ + 3cbµ
0 1/2 0


 (2.1)

where

ξ = exp

(
E1 − E2

kB(T − T0)

)
µ = exp

(
E1 − E3

kB(T − T0)

)
.

A matrix of this type, with all the columns normalized to one, has at least one eigenvalue
equal to one, while other eigenvalues can be real, complex or imaginary depending on the values
of the parameters involved. The eigenvalue-1 eigenvector shows the asymptotic distribution
(Pu, Pv, Pw)∞ to which the average statistics tends. This is also the statistics for the bulk if the
number of steps is very large; for smaller clusters, one should take an average over the sums
of many layers. The eigenvector (Pu, Pv, Pw)∞ is then

(
Pu

Pv

Pw

)
∞

=




4(1 − cb)[2(1 − cb) + 3cbξ ]

4(1 − cb)[2(1 − cb) + 3cbξ ] + 9cb[2(1 − cb) + 3cbµ]
6(1 − cb)[2(1 − cb)ξ + 3cbµ]

4(1 − cb)[2(1 − cb) + 3cbξ ] + 9cb[2(1 − cb) + 3cbµ]
3cb[2(1 − cb)ξ + 3cbµ]

4(1 − cb)[2(1 − cb) + 3cbξ ] + 9cb[2(1 − cb) + 3cbµ]




(2.2)

where the homogeneous character of all rational expressions entering the definitions of the
transition probabilities and the normalized eigenvector enables us to reduce the number of
essential parameters to two ratios only, namely ξ and µ.
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2.2. The SMM description for covalent network systems formed from atoms of valences two
and four

In the case of vitreous GexSe1−x , when a new atom (Ge or Se) comes close to the cluster, it
can be attached to one of the free valences that are in the rim. Since the coordination of Ge
is four and that of Se is two, the new atom may encounter four kinds of site. The atoms with
m = 2 will be denoted symbolically by a and the atoms with m′′ = 4 by c. We take c and a

to have concentrations cc and ca ≡ 1 − cc. With only two types of atom that form covalent
bonds, there are three elementary processes of single-bond creation. Each process involves
a characteristic energy for creating the bond between two atoms: E1, E4 and E5 will denote
these energies for a–a, a–c, c–c bonds.

During the cooling process, by which the glass forms, clusters of different sizes appear,
constituting the seeds from which the material grows. The growth is dendritic; there are no
rings. This assumption allows us to reduce the size of the stochastic matrix, and it is only valid
in the case of low concentration x � 1.

Each kind of site has a certain frequency of occurrence (denoted by u, y, z, t) in the rim
of the cluster. For example, a free valence has a frequency t . u has the same meaning as
in the preceding section and y, z, t are an atom of valence 4 at the rim with 1, 2 and 3 free
valencies, respectively. Thus, the distribution of each kind of valency at any stage of growth
can be represented by the vector (u, y, z, t), with its trace normalized to one: u+y + z+ t = 1.

The new Ge or Se atom has a certain probability of sticking to each of the free valencies
in the rim. Once this atom sticks, a new site on the rim is created and the rim changes.
The probabilities of each sticking process (represented by P(u, u), P(u, t)) are given by two
factors; one is the purely statistical factor and other is the Boltzmann factor which takes into
account the corresponding energy barriers to forming a bond.

Observe that for creating some kinds of site there are two possible paths with different
probabilities (for example, for creating one z-site there are two possibilities: stick a Se on a
t-site or a Ge on a t-site). In these cases, the total probability of creating a site is the sum of
the probabilities of each of the paths.

The transformation of the rim is written as a matrix that acts on a vector, because the
total probability of an atom sticking at a certain site is the sticking probability of the process
multiplied by the frequency on the rim of that kind of site. The components of the matrix
are the probabilities of transforming each kind of site into others. The vector obtained after
applying the matrix must also be normalized, since it represents a probability distribution. In
order to ensure that this is achieved, the sum of elements in each column of the matrix must
be checked to be one. The normalized matrix is written as [17]

M2 =




ca

caχ + 2ccδ

caχ

caχ + 2ccδ

caχ

caχ + 2ccδ

caχ

caχ + 2ccδ
0 0 1/2 0

0 0 0 1/2
2ccχ

caχ + 2ccδ

2ccδ

caχ + 2ccδ

2ccδ

caχ + 2ccδ

2ccδ

caχ + 2ccδ


 . (2.3)

Only the eigenvector with eigenvalue one remains after successive applications of the stochastic
matrix. The explicit form of the eigenvector one yields [17]


Pu

Py

Pz

Pt




∞

= 1

4B + 7A




4B
A

2A
4A


 (2.4)
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where A and B are given by

A = 2ccχ

ca + 2ccχ
(2.5)

B = ca

caχ + 2ccδ
(2.6)

and χ = exp((E1 − E4)/kBT ) and δ = exp((E1 − E5)/kBT ).
An important point to be remembered is that the SMM gives information about the

evolution of the rim in each step. Thus, the information about some structural property of
the bulk is obtained by summing over all the layers.

2.3. The SMM description for covalent network systems formed from atoms of valences two,
three and four

Ternary systems like GexAsySe1−x−y and GexSbySe1−x−y have been extensively studied
[5, 8, 18] not only in view of their applications, but also for testing the Phillips constraint theory
[19], since the bonding numbers (valencies) of Ge, As, Sb and Se (4, 3 and 2 respectively)
allow the realization of the rigidity threshold (attained with the average coordination number,
〈r〉 = 2x + y + z, which is 2.4) for many different chemical compounds.

To construct the stochastic matrix for a ternary system, the basic entities can represent
either single atoms or certain clusters that were already present in the liquid melt before the
formation of the glass [19, 20]. For example for GexAsySe1−x−y one can assume that it contains
three types of basic entity: clusters of two As atoms joined by one Se atom, and Ge and Se
atoms, which will be labelled as b-, c- and a-units, their respective concentrations being cb, cc
and ca . These concentrations of basic entities are related to those of the atomic species by the
following equations:

cc = x

1 − y
cb = y

2(1 − y)
ca = 1 − cb − cc. (2.7)

For the GexSbySe1−x−y compound the same relations hold, except that cb represents the
concentration of two b-atoms joined by an atom.

With these three basic entities forming covalent bonds among themselves, there are five
elementary processes of single-bond creation. Each process involves its characteristic energy
of activation for creating the bond between two units; these energies will be denoted by E1,
E2, E4, E3 E6 and E5 for a–a, a–b, a–c, b–b, b–c and c–c bonds, respectively.

During the cooling process already occurring in the melt, and when a new basic entity
comes close to a cluster, it can stick to one of the free valencies available on the surface. Since
the valencies of a-, b- and c-units are 2, 3 and 4 respectively, the new entity may encounter
seven types of configuration. If the growth is dendritic, it allows us to decrease the size of the
stochastic matrix, but this is the case only in the chalcogen-rich region (〈r〉 < 2.4).

The different configurations that appear in the surface of a cluster are called sites. These
configurations are u, v, w, y, z and t with the same meaning as in the preceding sections and
o represents two free valences of two atoms of valence 3 linked by an atom of valence 2. Using
all of this notation, the state of the surface is specified by the vector v = (u, v, o,w, y, z, t)

whose components are the relative frequencies of each kind of site; therefore its trace is norm-
alized to one: u + v + o + w + y + z + t = 1. The main task of the SMM is to determine the
evolution of this vector as the clusters continue to grow.

The probability of the sticking process is a product of two factors, one of which is purely
statistical; the other one is the Boltzmann factor which takes into account the corresponding
activation energy barrier necessary to form that bond. Similar expressions can be formed
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when c, b–a–b and a are added to each of the sites. However, in the GexAsySe1−x−y and
GexSbySe1−x−y systems, the Ge–Ge, Ge–As and Ge–Sb bonds are almost never observed, and
thus the probability of these kinds of bond forming is close to zero. This fact allows us to
reduce the number of possible transformations of sites.

The transformation of the surface of an average cluster is encoded in the matrix that acts
on the vector v, because the total probability of an entity sticking to a certain site is equal
to the probability of the sticking process multiplied by the frequency of occurrence of the
corresponding type of site at the surface. The components of the matrix are the probabilities
of transforming each kind of site into another, namely [20]

M3 =




C 1/2 1/2 1 1 1/2 1/2
D 0 0 0 0 0 0
0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 0
E 0 0 0 0 0 1/2




. (2.8)

The surface attains a stable statistical regime after many successive steps of agglomeration,
with the statistics given by the eigenvalue-1 eigenvector. The explicit form of this eigenvector 1
is [20] 



Pu

Pv

Po

Pw

Py

Pz

Pt




∞

= 1

13 − 7C




4
4D
2D
D

E

2E
4E




. (2.9)

The entries C, D and E are defined as

C ≡ 2ca
2cc + 4(cbξ + ccχ)

(2.10)

D ≡ 2cbξ

2ca + 4(cbξ + ccχ)
(2.11)

and E = 1 − C − D, where ξ = exp((E1 − E2)/kBT ) and χ = exp((E1 − E4)/kBT ).

3. Results and comparison with the experiment

In this paper we would like to show that, using the probability of forming a preferential link
obtained from the stochastic matrix method, we can derive the VFT dependence for the viscosity
in dendritic systems. To do this we proceed as follows. First we identify the average transition
probability with the average transition probability of forming some kind of preferential link, the
link that gives the largest probability of occurring in the glass transition. In fact only the weakest
bonds are broken or rearranged initially in the glass transition region [21]. Then following
the Adam–Gibbs theory we take the relaxation time (or viscosity) as inversely proportional
to the transition probability. Finally we apply the method of the temperature derivative to
obtain the form of the relaxation time (or the viscosity). In section 3.1 we study the covalent
network system formed from atoms of valences two and three, that for valences two and four
in section 3.2 and, finally, that for valencies two, three and four in section 3.3.
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3.1. Covalent network systems formed from atoms of valences two and three

To illustrate the method, without loss of generality, we take as an example a covalent network
system formed from atoms of valences two and three: the AsxSe1−x system. The main
property derived from the experimental relation between the composition and the transition
temperature is: if the Se content increases, the transition temperature decreases [14, 22]
and, adding the fact that x-ray and neutron scattering measurements as well as studies of
the infrared and Raman spectra have shown that the short-range order in the glass-forming
system AsxSe1−x is given by chain-like connected Se atoms and the structural units AsSe3/2

in the given range of composition [18], we consider the transition probability to be directly
proportional to form Se–Se bonds. Further, we are also assuming that the Se chains determine
Tg [17, 20, 21, 23].

The probability of forming the weakest bond when passing from the j th layer to the (j+1)th
one is simply given by counting the proportion of Se (a-atoms) formed between the step j and
the step j + 1 linked by another Se. If for a large number of steps of growth we calculate the
probability of forming the weakest bond, we find that it is given by P∞

Se−Se = P∞
u M111, where

P∞
u and M111 are defined by inserting equations (2.1) and (2.2) in PSe−Se, we have that

P∞
Se−Se = 8(1 − x)2

4(1 − x)[2(1 − x) + 3xξ ] + 9x[2(1 − x) + 3xµ]
. (3.1)

Further, since the viscosity is inversely proportional to the average transition probability,

η ∝ 1

P∞
Se−Se

= 4(1 − x)[2(1 − x) + 3xξ ] + 9x[2(1 − x) + 3xµ]

8(1 − x)2
. (3.2)

Taking the derivative d ln η−1/dT of equation (3.2) we find that[
d ln(P∞

Se−Se)
−1

dT

]−1/2

= (T − T0)

[
3x

kB

4(1 − x)(E2 − E1)ξ + 9(E3 − E1)µ

4(1 − x)[2(1 − x) + 3xξ ] + 9x[2(1 − x) + 3xµ]

]−1/2

. (3.3)

Equation (3.3) is one of the main results of this paper and is a complicated equation that
depends on the activation energies and predicts theoretically that the viscosity should be a
function of the concentration. Experimentally it is observed that energy differences involved
in equation (3.3) are nearly zero or at most ∼10 kcal mol−1 [20]. This result gives us four
situations: |E2 −E1| � |E3 −E1|, |E2 −E1| � |E3 −E1|, |E2 −E1| ≈ |E3 −E1| � 1 and
|E2 − E1| ≈ |E3 − E1| � 1. We analyse each case individually.

3.1.1. |E2 − E1| � |E3 − E1| (case I). With this approximation, ξ → 0 and µ → 1, and
equation (3.3) can be written as[

d ln η−1

dT

]−1/2

= (T − T0)

[
(E3 − E1)

kB

27x2

8(1 − x)2 + 9x(x + 2)

]−1/2

. (3.4)

If equation (3.4) is integrated, a theoretical VFT-like equation is obtained, namely

η = η0 exp

[
(E3 − E1)

kB(T − T0)

27x2

8(1 − x)2 + 9x(x + 2)

]
= exp

[
D∗(x)T0

T − T0

]
(3.5)

where the constant η0 is the pre-exponential factor and may be obtained from a plot of η against
1/T . In this equation, D∗(x) is not a constant but depends on the concentration:

D∗(x) = 27x2

8(1 − x)2 + 9x(x + 2)
D (3.6)
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where D is a number to be fixed by experiment at a known concentration and whose value is
obtained from the experimental VFT equation (see figure 1). E3 − E1 can be determined by
comparing equation (3.5) with the experimental VFT equation at a known concentration. Also,
it is important to remark that the energy dependence in equation (3.5) has the lowest energy
difference involved in the growth of these systems, as has been pointed out in the experiment
[20]. Equation (3.6) predicts that for these systems, fragility (inversely proportional to D)
decreases when the concentration x increases.

Figure 1. The changes of D∗(x)/D against the concentration from equations (3.6), (3.9) and
(3.12).

3.1.2. |E2 − E1| � |E3 − E1| (case II). A typical material with these characteristics of its
activation energies is AsxSe1−x , and in this approximation one has ξ → 1 and µ → 0, so
equation (3.3) can be written as[

d ln η−1

dT

]−1/2

= (T − T0)

[
(E3 − E1)

kB

12x

22x + 8

]−1/2

. (3.7)

If equation (3.7) is integrated, a theoretical VFT-like equation is obtained:

η = η0 exp

[
(E3 − E1)

kB(T − T0)

12x

22x + 8

]
= exp

[
D∗(x)T0

T − T0

]
(3.8)

and as in the last subsection this equation depends on the concentration and E3 − E1 can be
determined by comparing it with the experimental VFT equation:

D∗(x) = 12x

22x + 8
D. (3.9)

Experimentally, for x = 0.4 (As2Se3), D = 33 [24] and inserting this value in equation (3.8)
it is possible to predict that D = 46.2 for x = 1 (As); see figure 1. Inserting D = 33 and
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T0 = 236 K [23] in equation (3.8) one obtains that E3 −E1 = 55 kcal mol−1. Experimentally,
for Se (x = 0), D = 10 [8], equation (3.9) predicts D = 10 if x ≈ 0.07. This is not the
experimental value, but it predicts that it is almost zero. Also equation (3.9) predicts that the
largest value for D occurs at x = 1.

3.1.3. |E2 − E1| ≈ |E3 − E1| � 1 (case III). With this approximation for the energies,
ξ → 1 and µ → 1, and equation (3.3) can be written as[

d ln η−1

dT

]−1/2

= (T − T0)

[
(E3 − E1)

kB

3x

x + 2

]−1/2

. (3.10)

If equation (3.10) is integrated, a theoretical VFT-like equation is obtained, namely

η = η0 exp

[
(E3 − E1)

kB(T − T0)

3x

x + 2

]
= exp

[
D∗(x)T0

T − T0

]
(3.11)

and

D∗(x) = 3x

x + 2
D. (3.12)

As in the preceding subsections, the energy dependence in equation (3.11) is given by the
lowest difference energy (E3 − E1); see figure 1 (case III). Equation (3.12) predicts that if x

increases, the fragility decreases, and as in equations (3.6) and (3.9), the largest value for D

occurs when x = 1. Also in figure 1 one can appreciate that cases I and III are more fragile
than case II.

3.1.4. |E2 − E1| ≈ |E3 − E1| � 1 (case IV). With this approximation for the energies,
ξ → 0 and µ → 0, and equation (3.3) is equal to zero and predicts that the viscosity is
independent of the temperature; it is well known that this is not a physical solution for vitreous
systems. In fact, the model predicts that it is not possible to form an amorphous system with
|E2 −E1| ≈ |E3 −E1| � 1 that has a viscosity that depends either as an Arrhenius or a VFT
form.

3.2. Covalent network systems formed from atoms of valences two and four

To obtain the viscosity equation for the system formed from atoms with valencies two and
four, we take the GexSe1−x system as an example of a covalent network system formed from
atoms of valences two and four. The main property derived from the experimental relation
between the composition and the transition temperature is that if the Se content increases,
the transition temperature decreases [21, 25], and for GexSe1−x , as for AsxSe1−x , Feltz [21]
has shown that the short-range order in the glass-forming system is provided by chain-like
connected Se atoms; so we consider the transition probability as directly proportional to that
of forming Se–Se bonds; we are assuming that Se chains determine Tg as for the AsxSe1−x

system [17, 20, 21, 26].
The probability of forming the weakest bond when passing from the j th layer to the (j+1)th

one is given by counting the proportion of Se atoms (a-atoms) that are formed between the
step j and the step j + 1 linked by another Se. For a large number of steps of growth the
probability is given by P∞

Se−Se = P∞
u M211, where P∞

u and M211 are given by equations (2.3)
and (2.4) respectively, and inserting these values we have that

P∞
Se−Se = 4B2

4B + 7A
(3.13)
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where A and B have the same meaning as in section 2.2. If the viscosity is assumed to be
inversely proportional to the average transition probability,

η ∝ 1

P∞
Se−Se

= 4B + 7A

4B2
. (3.14)

Taking the derivative d ln η−1/dT of equation (3.14),[
d ln(P∞

Se−Se)
−1

dT

]−1/2

= (T − T0)

[
(E4 − E1)

kB

(
7Aca/(ca + 2ccχ) − 4B2χ

4B + 7A
+ 8Bχ

)

+
(E5 − E1)

kB
8
cc

ca
δ

(
2B − 1

4B + 7A

)]−1/2

. (3.15)

Equation (3.15) is one of the main results of this paper. As can be seen, it exhibits a
dependence on the activation energies and predicts theoretically that the viscosity is a function
of the concentration. To study equation (3.15), we take the same four situations as in the
preceding subsection and the results for the viscosity are enumerated in table 1.

Table 1. Approximations obtained for equation (3.15) (see the text).

Approximation Viscosity Equation number

|E2 − E1| � |E3 − E1| η = η0 exp

(
(E5 − E1)

kB(T − T0)
4
x2 − 4x + 2

(x − 1)2

)
(T1.1) (case I)

= exp

(
D∗(x)T0

T − T0

)

χ → 0, δ → 1 D∗(x) = 4
x2 − 4x + 2

(x − 1)2
D (T1.2)

|E2 − E1| � |E3 − E1| η = η0 exp

(
(E3 − E1)

kB(T − T0)
7

9x2 + 13x + 2

(x + 1)(9x + 2)

)
(T1.3) (case II)

= exp

(
D∗(x)T0

T − T0

)

ξ → 1, µ → 0 D∗(x) = 7
9x2 + 13x + 2

(x + 1)(9x + 2)
D (T1.4)

|E4 − E1| ≈ |E5 − E1| η = η0 exp

(
(E4 − E1)

kB(T − T0)

1

2

41x5 + 93x4 − 44x3 − 42x2 − 9x − 7

x(x − 1)(x + 1)(6x2 + 1)

)
(T1.5) (case III)

= η0 exp

(
D∗(x)T0

T − T0

)

χ → 1, δ → 1 D∗(x) = 1

2

41c5 + 93x4 − 44x3 − 42x2 − 9x − 7

x(x − 1)(x + 1)(6x2 + 1)
D (T1.6)

The energy dependence in equation (T1.1) is given by the lowest difference energy
(E3 − E1) as shown experimentally [20]. Equation (T1.4) predicts that if x increases the
D-value decreases, and the largest fragility is obtained when x ≈ 0.6.

Equation (T1.4) predicts that no changes should be observed in the fragility as a function
of the concentration for GexSe1−x ; see figure 2 (case II). Experimentally, Saiter et al [27]
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found that the variation of the average coordination number has a big range over which D is
constant, and this is in accordance with our theoretical prediction.

Figure 2. The changes of D∗(x)/D versus the concentration from equations (T1.2), (T1.4) and
(T1.6).

From equation (T1.6) an important prediction arises from the model (see figure 2), for
larger concentrations. For larger fragility and for the lowest concentration, a strong system
is obtained; in fact this predicts a transition from fragility to strength as the concentration
decreases and if x → 0, D → ∞ an Arrhenius behaviour is obtained.

If χ → 0 and δ → 0, equation (3.15) is equal to zero and predicts that the viscosity is
independent of the temperature; it is well known that this is not a physical solution for vitreous
systems.

3.3. Covalent network systems formed form atoms of valences two, three and four

To illustrate the method, we take as an example of a covalent network system formed from
atoms of valences two, three and four the GexAsySe1−x−y system. The main property is that
as the Se concentration increases, the transition temperature decreases [14, 28], so we consider
the transition probability as directly proportional to that of forming Se–Se bonds; also we are
assuming that Se chains determine Tg [29, 17, 20].

The probability of forming the weakest bond when passing from the j th layer to the (j+1)th
one is simply given by counting the proportion of Se chains that were formed between step j

and step j + 1 linked by another Se. If we calculate for a large number of steps of growth, the
probability is given by P∞

Se−Se = P∞
u M311, where P∞

q and M311 are given by equations (2.8)
and (2.9) respectively, and inserting these values to obtain the probability of forming a Se–Se
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bond, we have

P∞
Se−Se = 4C

13 − 7C
(3.16)

where C has the same meaning as in section 2.3. If we take the viscosity as inversely
proportional to this probability, then

η ∝ 1

P∞
Se−Se

= 13 − 7C

4C
. (3.17)

Taking the derivative d ln η−1/dT of equation (3.17), we obtain[
d ln(P∞

Se−Se)
−1

dT

]
= 2

kBT
[cd(E2 − E1)ξ + cc(E4 − E1)χ]

[
7C2

13 − C

]
. (3.18)

This last equation is also one of the main results of this paper, showing the dependence on the
activation energies and predicting theoretically that the viscosity should be a function of the
concentration. To study equation (3.18), we follow the same procedure as that described in
the preceding sections, and the results for the viscosity are given in table 2.

Table 2. Approximations obtained for equation (3.18) (see the text).

Approximation Viscosity Equation number

|E2 − E1| � |E3 − E1| η = η0 exp

(
(E4 − E1)

k(T − T0)

1

2

y(2x + 3y − 2)(82x + 19y − 82)

(12x + 5y − 12)(1 − y)(2x + y − 2)

)
(T2.1) (case I)

= η0 exp

(
D∗(x, y)T0

T − T0

)

ξ → 0, χ → 1 D∗(x, y) = 1

2

y(2x + 3y − 2)(82x + 19y − 82)

(12x + 5y − 12)(1 − y)(2x + y − 2)
D (T2.2)

|E2 − E1| � |E3 − E1| η = η0 exp

(
(E2 − E1)

k(T − T0)

1

2

x(2x + 3y − 2)(126x − 123y + 82)

(7x − 9y + 6)(y − 1)(2x − 3y + 2)

)
(T2.3) (case II)

= η0 exp

(
D∗(x, y)T0

T − T0

)

ξ → 1, χ → 0 D∗(x, y) = 1

2

x(2x + 3y − 2)(126x − 123y + 82)

(7x − 9y + 6)(y − 1)(2x − 3y + 2)
D (T2.4)

|E4 − E1| ≈ |E5 − E1| η = η0 exp

(
(E2 − E1)

kB(T − T0)

1

4

(2x + y)(2x + 3y − 2)(334x − 123y + 82)

(20x − 9y + 6)(y − 1)(6x − 3y + 2)

)
(T2.5) (case III)

= η0 exp

(
D∗(x, y)T0

T − T0

)

ξ → 1, χ → 1 D∗(x, y) = 1

4

(2x + y)(2x + 3y − 2)(334x − 123y + 82)

(20x − 9y + 6)(y − 1)(6x − 3y + 2)
D (T2.6)

Equation (T2.4) predicts for x = y that the minimum fragility obtained occurs not
at the highest value of the coordination number 〈r〉 but rather at 〈r〉 ≈ 2.6, see figure 3.
Experimentally it is observed that the minimum fragility occurs at 〈r〉 = 2.4 [8], the rigidity–
percolation threshold. Tatsumisago et al [8] also found that the same low fragility is obtained for
other ternary compositions with 〈r〉 = 2.4. The agreement is in my opinion rather satisfactory.

The maximum value of equation (T2.6) is obtained at y = 1; this means that if Ge is
absent from the system, we obtain the strongest glass.

If ζ → 0 and σ → 0, equation (3.18) is equal to zero and predicts that the viscosity is
independent of the temperature, which is not a physical solution for vitreous systems.
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Figure 3. The changes of D∗(x = y)/D against the concentration from equation (T2.4), compared
with the experimental values for GexAsxSe1−x−y (experimental data taken from reference [30]).

4. Concluding remarks

In this work we have obtained a theoretical VFT-like equation for the viscosity (average
relaxation time) of covalent network glasses using the generalized SMM. To determine an
expression for the viscosity using the generalized SMM, we took the transition probability
as the probability of forming the weakest bond between the atoms that form the covalent
network glass calculated for a large number of steps of growth; this probability was obtained
by the SMM. To identify an equation for the viscosity, we used the method of the temperature
derivative and a VFT-like equation was obtained (equation (3.3)), whose main property is
that it predicts a dependence on concentration. For this equation three parameters remain
to be determined, η0, D and T0, and a comparison with experimental data provides us with
these values. Also, to compare equation (3.3) with experimental values it is necessary to
make some approximations to reproduce the main properties for some covalent network
glass. These approximations are made using the experimental values for the activation
energies.

In section 3.1.2 we study the viscosity of the AsxSe1−x system and as a main result we
find that the minimum fragility (which is inversely proportional to D∗(x)) occurs at the highest
value of the concentration (or 〈r〉). Also, using equation (T2.4) we predict that D ≈ 10 is
obtained at x ≈ 0.07; it is well known to occur experimentally at x = 0 (Se).

In section 3.2.2 we study the viscosity for GexSe1−x ; our methods predict that no sig-
nificant changes occur with the variation of the concentration. This is understood, because
experimentally it was shown by Saiter et al [27] that the variation of the apparent activation
energy for the equilibrium relaxation time versus the average coordination number has a big
range over which the activation energies are constant: below 2.1 to almost 2.3. Also, when the
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differences of activation energies are of the same order, the model predicts a transition from
fragile to strong liquid for this glass-forming system.

In section 3.3 we study the viscosity for GexAsySe1−x−y and as a main result we find
that the minimum fragility predicted by equation (T1.4) occurs not at the highest value of 〈r〉
but rather at 〈r〉 = 2.6. Experimentally it is observed that the minimum fragility occurs at
〈r〉 = 2.4, the rigidity–percolation threshold. And evidently at higher values of 〈r〉, specific
chemical effects such as the occurrence of double Se bridges begin to require consideration.
The credibility of this idea arises from the fact that Tatsumisago et al [8] have found that the
same low fragility is obtained for other ternary compositions with 〈r〉 = 2.4.

Moreover, the results obtained by combining the SMM and the derivative methods to
find viscosity expressions are used to study the α- and β-relaxation in B2O3 (see references
[11, 12]), a system formed principally of rings, and in this article the α-relaxation in dendritic
systems (without rings). This gives us an important perspective on studying the viscosity in
strong glasses taking into account important physical parameters and the constitution: with
rings or without rings. At this time all the physical parameters obtained by the SMM come
from configurational contributions.
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